
Published in Proceedings of the SPIE Astronomical Telescopes and Instrumentation Symposium: New Frontiers in Stellar Interferometry,
Glasgow, Scotland, June, 2004. (SPIE vol. 5491-173).

Adaptive DFT-based fringe tracking and prediction at IOTA

Edward Wilson*a, Ettore Pedrettibc, Jesse Bregmand, Robert W. Mahd, Wesley A. Traubb

aIntellization, 454 Barkentine Ln, Redwood Shores, CA 94065
bHarvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
cUniversity of Michigan, Astronomy Dept, 914 Dennison Building, Ann Arbor, MI 48109

dNASA Ames Research Center, MS 269-1, Moffett Field, CA 94035

ABSTRACT

An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array
(IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three
baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for
computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on
off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating
system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the
science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this
algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension
would require significantly more computational capacity.

Keywords: Interferometry, fringe tracking, IOTA, discrete Fourier transform, interferogram, predictive control

1. INTRODUCTION

The Infrared Optical Telescope Array (IOTA), shown in
Figure 1, is a 3-aperture long baseline Michelson stellar
interferometer located on Mt. Hopkins near Tucson,
Arizona. Three 45-cm collectors can be located along a 15
m by 35 m L-shaped array, supplying visible and near-IR
light to pupil-plane beam combiners. The operational
details and scientific accomplishments of IOTA have been
well documented by other authors1,2,3.

This article reports on the development of algorithms
designed and used to simultaneously null the optical path
differences (OPDs) for the three baselines provided by
IOTA’s three apertures. Examples of fringes with relatively
higher (on the left) and low (on the right) signal-to-noise
ratios (SNRs) are shown below. These scans were taken on
the same delay line, about 2 seconds apart. The relative
confidence in the fringe center identification is indicated as
the number on the plot, and will be discussed later. Significan
vibration, photon noise, and detector noise. The goal of the fri
cophasing), by controlling the OPD to allow the interferogram to
and fainter objects. The controller works by identifying the fring
each scan, and then adjusting the centers-of-travel of the piezo-d
packets centered in all 3 scan windows.

 1

* Ed.Wilson@intellization.com; phone 1 650 604-0465; fax 1 650 604-359
Figure 1: Infrared-Optical Telescope Array (IOTA)
t sources of noise include atmospheric turbulence,
nge tracking system is to perform coherencing (vs.
be captured in the presence of bad seeing conditions,
e-center locations on all 3 interferograms following

riven scanning mirrors, attempting to keep the fringe

4

0 50 100 150 200 250
-300

-200

-100

0

100

200

300

Sample number []

N
or

m
al

iz
ed

 in
te

ns
ity

 []

raw scan data
identified center

0 50 100 150 200 250
-300

-200

-100

0

100

200

300

sample number []

N
or

m
al

iz
ed

 in
te

ns
ity

 []

6.5

raw scan data
identified center

1.0

 Figure 2: typical IOTA scan with low SNR Figure 3: typical IOTA scan with higher SNR

Details of the relevant interferometric derivations is covered thoroughly by other authors4,5. The idealized fringe packet
function is a sinc function multiplied by a sinusoid, and can be represented with Equation 1, where is the normalized
intensity,

y
x is the sample number, and are parameters defining respectively the amplitude, sinc-

function width, sinc function center, sinusoid (fringe) frequency, and sinusoid phase shift. Many equivalent variants on
this functional form are of course possible (for example, substituting sin(

, , , ,A B C D E

)dx e+ for); this one was
chosen to facilitate the particular gradient-based optimization procedure developed. Although

cos(())D x E+
E is not an independent

variable in theory, in practice, noise and atmospheric disturbances make it independent of the other parameters.
 (1) sinc(()) cos(())y A B x C D x E= + +

Figure 4 shows an idealized packet with
parameters chosen to approximate that from the
higher-SNR real-data fringe shown previously.
The computing and actuation aspects of the
control system are described by Traub and
Pedretti2,5; the present article details the fringe
tracking algorithm and aspects of its software
implementation.

Due to the significant noise sources present, the
fringe tracking algorithms developed here were
developed through extensive testing on actual data
sets from IOTA, dating back to 1997 (as opposed
to working with simulated data). The algorithms
were developed with autonomous adaptability
(due to widely varying seeing conditions and
object intensities), robustness (absolute accuracy
is not as important as keeping the fringe within the
scan window), and computational efficiency (requiring a
minimal amount of computation time due to the limited
resources and need for fast scanning–typically 3 Hz).

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

100

150

200

250

Sample number []

N
or

m
al

iz
ed

 in
te

ns
ity

 []

Idealized fringe function, with sinc envelopes

1.1. Related research

 2
Figure 4: Idealized interferogram with sinc envelopes

Interferometric fringe tracking is a broad field, so this section will focus on fringe tracking developments at IOTA.

Wilson developed a method, summarized in this paper, that used the envelope of the interferogram to identify the packet
center, and a gradient-based optimization method for refinement of this estimate6. Although fast and robust, it did not
make use of the fringe frequency, leading to the present research which makes this improvement. This was an off-line
study using IOTA data taken in 1997.

Morel and others on the IOTA team worked to implement the core aspect of Wilson’s 1999 algorithm on the IOTA
scanning hardware7. The fringe-center identification aspect of the system was found to be very robust and accurate even
with very noisy signals, but the slow response of the control communications and actuation hardware made the overall
control system ineffective. The control computing, communications, and actuation hardware was subsequently upgraded
to permit further implementation efforts2.

Pedretti developed a fringe tracking algorithm taking a completely different approach, based on double Fourier
interferometry (DFI)5,8. This method calculates the group delay of fringes dispersed with DFI, which is used to obtain
the wavelength dependent phase from the fringe packet. This method has also been implemented at IOTA on the current
hardware, and is used there regularly. A performance comparison of the different approaches at IOTA is presently
underway.

Thureau developed a fringe envelope tracking algorithm at COAST, which was subsequently implemented for testing at
IOTA9.

1.2. Approach
Guided by a background in signal processing and system identification (ID), the original approach taken towards fringe
tracking was to fit the parameters in Equation 1 to the data on each scan, with the fringe center then contained in . A
nonlinear, gradient-based optimization was developed to perform this, with extensive testing and tuning on
representative IOTA data sets from 1997. This nonlinear optimization required a reasonably close initial estimate for

, which was provided by processing the fringe packet envelope. As it turned out, the accuracy of this initial estimate
was generally within a sample or two (out of 256 points in a scan, typically) of the result following the full nonlinear
ID. Given implementation constraints and the existence of other more significant error sources, it was decided that this
initial estimate processing could serve as the on-line fringe ID algorithm. This was tested on-line in 1999 and 20007.

C

C

In 2002, following the instrument control hardware upgrades and in preparation for a second implementation attempt,
the algorithm was updated. The original envelope-based algorithm basically drew an envelope around the data and
found the hump, thereby completely ignoring the fringe frequency, . As can be seen in the example data given
previously, the fringe frequency is visible in the fringe packet, and is relatively obscured by noise outside the center
(although it is still there). The improvement looks for intensity amplitude at the fringe frequency, rather than at all
frequencies (as the envelope-based ID did). This is accomplished with an efficiently implemented sliding window
discrete Fourier transform (DFT). This updated algorithm was implemented in February 2002 at IOTA, with testing on
simulated fringes through the instrument, and later on-the-sky testing with all 3 apertures in May 2002. Being more
physically based, the change was made with the expectation that it would be more robust for future data and algorithm
changes.

D

1.3. Article overview
The DFT- and envelope-based tracking algorithms, both of which are concise enough to implement on the real-time
system, are presented in Sections 2 and 3. A gradient-based optimization algorithm to identify all fringe packet
parameters (, , , ,A B C D E) from Equation 1 is developed in Section 4. Initial proof-of-concept results for using these
identification results for fringe motion prediction are presented in Section 5. Implementation issues and conclusions are
presented in Sections 6, and 7.

2. DFT-BASED TRACKING

 3

A more detailed description of the algorithm specifics is described elsewhere by Wilson10.

2.1. Algorithm summary
1. A window (nominally of a length containing two fringe periods, but can be set to any integer) is passed over

the data, where a single-frequency discrete Fourier transform (DFT) is calculated to try to detect the expected
fringe frequency (this frequency is adaptively updated–by changing the window size–after each scan). The
DFT is calculated 5 times for each scan, using window sizes of nominal plus [-4, -2, 0, +2, +4]. The number of
points in the window is odd so the center lands on a point. The relative scaled magnitudes of these DFT results
are used to determine the nominal window size for the next scan.

2. Each of the 5 DFT results is smoothed using a rectangular averaging filter.
3. The point-by-point maximum of the 5 smoothed DFT results, referred to as the composite DFT result, is taken

for further processing. Steps 1, 2, and 3 make this result more robust to intra-packet fringe frequency variations
than a single-frequency DFT scan would be. The frequency corresponding to the largest DFT magnitude is
chosen as the nominal frequency for the following scan–providing adaptive response to changing interferogram
properties, and eliminating the need to initially set this carefully.

4. A fringe-packet-finding template is convolved with the composite DFT result, providing a peak when the
composite DFT result matches the template shape. For computational efficiency, a rectangular template is used
in place of a sinc-shaped template.

5. The sample corresponding to the maximum value of the previous step is used as the identified fringe-packet
center.

6. A confidence metric is calculated based on the relative magnitudes of the composite DFT result near the ID’ed
center and the background.

7. The previous steps are performed on all aperture pairs (3 in the case of IOTA), and the ID results and
corresponding confidence metrics are combined to determine the scan centers for the next scan (to begin within
a couple of milliseconds).

2.2. Algorithm steps illustrated on example data
The algorithm steps are presented using actual data, as shown in the following figures. They were generated using data
collected from the AB-fringe of the 6th scan of the iota4 dataset on April 28, 2002; targeting star 12Iot_Dra; RA
(J2000): 15.415278; Dec (J2000): 58.966111. Figure 5 shows the normalized raw data, as well as the result of the center
identification that came after all steps were completed.

0 50 100 150 200 250
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

sample number []

no
rm

al
iz

ed
 d

at
a

(A
-B

)/(
A

+B
) [

]

Raw scan data - scan #6, AB fringe,

raw scan data
identified center

70 75 80 85 90 95 100 105 110
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

sample number []

no
rm

al
iz

ed
 d

at
a

(A
-B

)/(
A

+B
) [

]

Raw scan data - 15-point DFT window containing 2 fringe wavelengths

raw scan data
DFT window for i=89
DFT window for i=88
identified center

 Figure 5: Normalized raw data Figure 6: DFT sliding window

Figure 6 shows how the DFT window is passed over the raw data. The purpose of the DFT is to locate areas in the scan
where the expected fringe frequency is present. A few things are done to greatly improve the efficiency of the DFT
calculation–note it is not calculated as an FFT. This DFT calculates the magnitude of the signal in only one frequency
bin–that corresponding to the fringe frequency. Also, a rectangular window is used, which enables very fast
computation as the window is passed over the data. Calculating each new data point requires adding a term for the
incoming sample and subtracting a term for the leaving sample. So for example, to calculate the DFT for the fringe

 4

frequency centered at sample #89 in the figure uses the DFT result for sample #88, then adds a term for point #97 and
subtracts a term for point #81.

The DFT window size is chosen in this case to nominally contain exactly two fringe wavelengths. Two wavelengths
appears to be a good compromise between accuracy on clean scans (with higher coherence time, more accuracy would
be possible with a larger window, but on clean scans tracking accuracy is not difficult) and noisy scans (if the coherence
time is much below two wavelengths, there are probably no fringes to be seen).

For calculation of the DFT over the full spectrum, the first component (“bin”) would correspond to the overall bias, the
second component would correspond to a full wavelength extending across the full window, and the third component
would correspond to two full wavelengths. Since the window size was chosen to cover two full fringe wavelengths, we
calculate only the third component of the full-spectrum DFT. The real and imaginary parts are computed and then
combined to produce the magnitude. The phase information is not used. This result is then smoothed using a sliding
window having the same width as the DFT window (two wavelengths in this case), with the mean over the window
producing the result shown in Figure 7. This step is computationally efficient, and reduces the variability in the DFT
results. Even though it is calculated very differently, the result is very similar to that resulting from the envelope-finding
calculations described in Section 3. Although the envelope-finding calculations provided excellent results, this DFT
calculation is more physically based and is expected to provide better robustness for noisy signals.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample number []

D
FT

 m
ag

ni
tu

de
 []

Magnitude of 15-point DFT calculated at each point in the scan

DFT result
identified center

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample number []

D
FT

 re
su

lt
fo

r w
in

do
w

 s
iz

e
=

no
m

in
al

 +
/-

2,
 4

Size of DFT window is checked on each scan

nDft = 13
nDft = 15
nDft = 17
nDft = 19
nDft = 21

 Figure 7: Smoothed DFT result Figure 8: Multiple smoothed DFT results

Figure 8 summarizes the results of the smoothed DFT calculations using five different window sizes. Since the fringe
frequency is not known exactly, and may change, this algorithm adapts to use the best window size. For every scan, the
smoothed DFT calculations discussed above run five times: once for the window size used on the previous scan, once
each for 2 and 4 samples larger, and once each for 2 and 4 smaller. The window size (nDft, as shown in the plot legend,
is the number of samples) corresponding to the maximum smoothed DFT value (in this case, the highest DFT result
occurs for nDft = 15 at sample #79) is chosen and carried through to the next scan as the nominal window size. To
prevent nDft from increasing or decreasing too rapidly during periods of low signal-to-noise ratio, only one step up or
down is permitted per scan.

The “composite DFT result” is formed by taking a point-by-point maximum over the 5 smoothed DFT results. This is
the vector that is passed on for further processing. The smoothed DFT results (shown in Figure 8) are compensated
based on the window size to allow meaningful comparison among the different results at each point. As can be seen by
the 5 individual curves here, the composite DFT result is more representative of the fringe packet than any single
smoothed DFT result would be. This is due to the intra-packet variations in fringe frequency, caused primarily by
atmospheric distortion.

 5

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample number []

N
or

m
al

iz
ed

 D
FT

 m
ag

ni
tu

de
 []

Packet-finding template is convolved over DFT result, shown here at packet center

DFT result
Template
identified center

0 50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample number []

co
nv

ol
ve

d
D

FT
 m

ag
ni

tu
de

 []

Result of convolution of Packet-finding template with DFT result

template convolution result
identified center

Figure 9: Composite DFT result before (left) and after (right) convolution with packet-finding window

Figure 9 illustrates how a template is convolved with the composite DFT result. The template is very simple, composed
of ones and zeros, leading to very efficient computation: additions and subtractions at the template transitions only, as
the template is passed over the composite DFT result–as opposed to an arbitrary convolution, which would require
multiplications across the full template, repeated when centered at each point in the scan window. The template is very
loosely modeled after what the ideal DFT result should look like (abs(sinc)-like). The computation is efficient, since
after the initial computation for the first sample, each additional sample calculation involves only one add and one
subtract (no multiplies or divides)–corresponding to the two vertical edges on the template. The +1 region is chosen to
correspond approximately to the width at half the composite DFT result. The software implementation allows this width
to be set easily, and an extension to make it adaptive should be feasible, although performance appears to be very robust
to this number. For example, a value of nFringe = 35 for the half-width (meaning the template spans 71 samples) was
used to successfully track simulated fringes at IOTA with the scan set to both 30 and 15 microns (the 15-micron scan
had a fringe packet twice as wide as that of the 30-micron scan). The index corresponding to the maximum value of this
result is used as the packet center estimate.

2.3. Confidence metric calculation

Once the fringe packet center has been
identified, a decision must be made as to the
result’s level of validity of and degree to
which it should be used to update the scan-
center position. In cases where the fringe
packet disappears momentarily, it is better to
do nothing (keep scanning in the same
location) than to chase the noise.

This calculation is shown graphically in
Figure 10. The concept is that the DFT
calculation near the identified center should
have a measurably higher value than the DFT
calculation on the background noise. The
mean of the DFT in windows spanning 20% of the scan
width is calculated at the left edge, right edge, and at the
identified center–as shown by the blue rectangles in the figure.
smaller of the two edge measurements (minus one) is taken as t
then use the minimum is that this will give a valid background
scan.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

mean(DFT)=0.056839

mean(DFT)=0.27605

mean(DFT)=0.028475

DFT ratio = center / min(left, right)
 = 0.27605 / min(0.056839, 0.028475)
 = 8.6944

sample number []

D
FT

 m
ag

ni
tu

de
 []

Calculation of confidence metric, dft_ratio = 8.6944

DFT result
identified center

One approach to using this confidence metric would be discrete
result based on that comparison. Setting the threshold value w
relative scan width, and other factors. It is a balance between the

 6
Figure 10: DFT-based confidence metric
The ratio of the mean DFT at the identified center to the
he confidence metric. The reason to take both edges and
 measurement even if the fringe falls at the edge of the

: set a confidence threshold and either use or ignore the
ill depend on the level of tracking accuracy desired, the
 cost of accepting a wrong estimate and ignoring a valid

one–these costs vary depending on the application. Some additional complications with this method are raised when
considering multi-aperture interferometry, where changing the scan center on a single delay line affects two
interferograms.

2.4. Three-scan tracking
When the third telescope at IOTA went on-line in February 2002 and 3-scans became available for tracking, the
approach taken was to try to estimate the fringe center (related to OPD) for each of the three scans independently (as if
only two telescopes were present), then to combine these results, along with the corresponding confidence estimate for
each result, into the updated scan centers for the next scan. Ettore Pedretti at IOTA had already developed an algorithm
to optimally merge the individual fringe center IDs, along with corresponding confidence estimates5. This algorithm
was used directly.

2.5. Optional operations
Non-rectangular template. If the approximate width
of the sinc function is known, a template of such a
shape could be used in place of the rectangular
template used in Section 2.5. A simpler version that
is far more computationally efficient than a sinc-
shaped template, and only slightly less efficient than
the rectangular template, would have 3 rectangular
regions as shown in Figure 11. This was used as part
of the implementation in February 2002, but was
later changed (to the rectangular) since distortion due
to edge effects was found to occur more frequently
than expected due to the narrower scan width.
However, it should be considered a viable option.

In summary, switching to such a non-rectangular
template would produce a negligible increase in
computation time (both are extremely efficient), provide
slightly better ID accuracy for fringe packets away from t
performance for fringe packets at or near the edge of the scan

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sample number []

N
or

m
al

iz
ed

 D
FT

 m
ag

ni
tu

de
 []

Packet-finding template is convolved over DFT result, shown here at packet center

DFT result
Template
identified center

Symmetry checking. The interferogram should ideally b
contained a step that would calculate the symmetry and w
virtually all other signal processing steps, the symmetry
efficiency, and ended up taking about double the processing
encountered with edge-effects; distortion would result whe
partially off the scan window. The symmetry calculation wa
was centered, but the combined issues of compute time and e

0 50 100 150 200 250
-5

0

5

10

15

20

25

30

35

sample number []

co
nv

ol
ve

d
D

FT
 m

ag
ni

tu
de

 []

Result of convolution of Packet-finding template with DFT result

template convolution result
identified center

0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample num

sy
m

m
et

ry
 fa

ct
or

 []

Symmetry factor calculated on DFT r

Figure 12: Symmetry chec

 7
Figure 11: Non-rectangular packet-finding template
he ends of the scan, but possibly significantly worse ID
 window.

e symmetric about its center. The algorithm originally
eight the DFT (or envelope) result accordingly. Unlike
calculation could not be implemented with exceptional
time of all other operations combined. Problems were also
n trying to calculate the symmetry when the fringe was

s useful for gaining slightly more accuracy when the fringe
dge distortion led to its removal.

150 200 250
ber []

esult (lower = more symmetric)

symmetry factor
identified center

0 50 100 150 200 250-100

-50

0

50

100

150

200

250

300

350

400

sample number []

te
m

pl
at

e
re

su
lt

/ s
ym

m
et

ry
 re

su
lt

[]

Template result / symmetry result - peak is used to determine packet center

template / symmetry result
identified center

king to improve accuracy

The above sequence shows how the symmetry checking step was applied. The leftmost plot shows the output of the
convolution of the packet-finding template with the composite DFT result. The middle plot shows the symmetry
calculation (lower number means more symmetric). The rightmost plot combines the two, dividing the left result by the
middle. The index corresponding to the maximum value of this result is used as the packet center estimate. This
sequence illustrates the sharpening possible with this symmetry calculation.

Single frequency DFT. If the fringe frequency across the interferogram is consistent, then a single-frequency DFT can
be used, rather than the combination of 5, as is presently used. Since the DFT calculation comprises the bulk of the
computation, this would create close to a 5-fold decrease in compute time. However, it is unlikely that that would be a
good tradeoff.

3. ENVELOPE-BASED TRACKING

The fringe-tracking algorithm developed in 1998-1999 and implemented in 1999-2000 used a different approach, which
should still be considered as a viable option6,7. Developed and tested using about 4000 scans taken at IOTA in 1997,
that algorithm was able to automatically identify fringe packet parameters to accuracy as good as could be determined
by eye. That is, the identified fringe packet parameters (amplitude, spread of sinc function, center, frequency of fringes,
and phase shift of fringes–or , , , ,A B C D E from Equation 1) following envelope-based initialization and gradient
based optimization appeared to be the “best” match to the actual data.

Step 1. Data sets from each of the two collectors are combined, for example using
channelA channelBy
channelA channelB

−
=

+
.

Step 2. Outliers are removed
Step 3. Local bias is removed using a high-pass filter
Step 4. The envelope of the absolute value of the signal is calculated, eliminating the individual fringes. In the

case of no noise, this envelope would have the form abs(sinc(())y A B x C= + .
Step 5. A packet-finding template as described in Section 2.9 is convolved with this result.
Step 6. The initial estimate for the C is found by maximizing weighted symmetry over this result.

Gradient-based optimization, described Section 4, refines this estimate, and identifies the other four interferogram
parameters. A fringe tracker using steps 1, 3, 4, 5, and 6 was implemented at IOTA7. Morel converted the MATLAB
code to C, then to Labview for implementation and integration with the other control system components.

C

4. GRADIENT-BASED OPTIMIZATION OF ALL FRINGE PARAMETERS

Following the use of either the DFT- or envelope-based algorithms to get an initial estimate of C , the remaining steps
in identifying use an FFT and nonlinear gradient-based optimization. These steps take about 200-600%
longer to compute, and produce only a small improvement in fringe-packet-center identification. For the 4000-scan
1997 data set, the maximum difference between initial and final estimates for C over all the data was 1.6 samples;
standard deviation was 0.5 samples.

, , , ,A B C D E

The improvement in center-estimation alone probably does not warrant implementing the full estimation of

, since the random motion of the fringe packet center is roughly 20 times larger than this improvement.
However, these additional parameters have been found to contain information useful for fringe-packet-motion
prediction–initial tests show that past and present values of fringe frequency, , are useful for predicting future values
of interferogram center, C .

, , , ,A B C D E

D

 8

For consistency with the steps described in Section 3, step numbering begins where that ended.
Step 7. Using the initial estimate of , and using an initial guess for C B (sinc width), the remaining parameter

describing the sinc envelope, A , is found by a least squares fit to the envelope found in step 4 of Section
3. This is a direct calculation.

Step 8. With , ,A B C
, ,

 now having good initial estimates, an iterative gradient-based optimization is performed to
find the A B C that minimize the squared error with respect to the envelope data.

Step 9. Fringe parameters, and D E , are found by fitting the ideal fringe function from Equation 1 to the data
(following bias outlier and bias removal, Step 3 of Section 3) over the center of the fringe packet (half
height of the sinc function determines the center region). An FFT taken over this packet center region
provides initial guesses for and D E , and an iterative gradient-based optimization then finds ,
with

, ,C D E
A and B held fixed.

Simultaneous gradient-based optimization of was
attempted, but did not work as well on the noisy data as the
sequential procedure (then) listed above. One
example of a cause of this difficulty is shown in Figure 13. Half-
way through the fringe-packet scan, a sudden phase shift was
encountered. If all 5 parameters were adapted simultaneously, the
result would be a flat line, with , since the identification
would be unable to lock onto the left and right halves of the fringe
packet. Squared error would be minimized approximately by a flat
line, . With the present algorithm, two parameters
representing the sinc function envelope (and

, , , ,A B C D E

E, ,A B C , ,C D

0=

A

A

0A =
B) were held

fixed while the fringe frequency and phase shift (and) were
identified. The identification locked onto the right half of the
fringe packet since that resulted in a better fit than the left half. The figure shows the raw data, along with ID’ed sinc-
function envelope and ID’ed full sinc-sinusoid function.

D E Figure 13: Example of significant intra-packet shift

It should be possible to calculate the gradient directly, rather than by perturbation (as is presently done). The
perturbation calculation is not very inefficient here since there are only 3 parameters at a time being calculated (ABC or
CDE). The main benefit from using a backpropagation-based gradient calculation is that computations do not increase
linearly with the number of parameters. To do this, there would be a slight problem due to the absolute value function
present in the calculation of A, B, C (since abs() is not continuously differentiable). This may be addressed by focusing
only on the main packet, so the abs() could effectively be dropped from the equation.

5. PREDICTION OF FRINGE-MOTION

Initial, proof-of-concept experiments with fringe packet motion prediction were performed. An adaptive linear model
using present and past identified fringe parameters was developed as a first step. The center of the next fringe packet
and the magnitude of fringe-packet-center motion were predicted, with the goal of optimizing on-line the parameters
(e.g., travel limits and rate) of the next scan. This model produced approximately 5% (and as high as 10%) improvement
over no prediction (i.e., the baseline case of predicting that the fringe packet will remain where it is on the next scan).
Extension to nonlinear prediction methods, including neural networks is under investigation.

In the data analysis that follows, different combinations of identified parameters were used, along with the changes in
those parameters, to predict the change in interferogram center and the absolute value of the change. A least-squares
linear predictor was used for each set of input parameters. To measure the prediction performance as expected on new
data, vs. as fit to the training data, the results of each linear predictor were evaluated by testing on a segment of the data

 9

that was not used during model development (test data vs. training data). This cross-validation procedure is common in
model building and other machine learning applications.

The results of the prediction were compared against a baseline case that: (1) predicted no motion - that the
interferogram would stay where it was, and (2) predicted that the absolute value of the motion would equal the RMS of
all motion detected so far on that target. The percentage improvement as compared to these baselines is printed in the
following table, which has each of 9 data sets from 1997 in rows (there are 8 ~500 point data sets, and the 9th set is all 8
combined), and each of the 8 input parameter combinations tested in columns.

 col1 col2 col3 col4 col5 col6 col7 col8 | [Mean]
Data set 0 7.507 7.854 7.765 6.521 3.889 6.680 4.097 6.489 | 6.350
Data set 2 8.939 9.978 9.550 10.232 6.238 6.826 4.961 6.272 | 7.874
Data set 3 5.267 4.787 4.717 4.959 -0.818 5.280 4.673 2.829 | 3.962
Data set 5 2.312 2.786 3.883 3.583 3.556 3.841 2.804 2.739 | 3.188
Data set 6 7.506 7.581 7.453 7.502 3.026 4.301 6.893 2.850 | 5.889
Data set 7 0.778 -0.149 0.836 1.832 0.637 1.790 2.566 -0.279 | 1.001
Data set 8 -0.102 2.864 3.118 3.067 -0.350 3.017 3.861 2.768 | 2.280
Data set10 0.841 2.403 0.890 0.880 0.511 1.954 0.674 1.270 | 1.178
Data set11 2.940 2.675 3.081 3.074 1.476 2.953 2.931 1.259 | 2.548

[Mean] 3.998 4.531 4.588 4.628 2.018 4.071 3.718 2.911

Variables used in prediction [y = A * sinc(B(x+C)) .* cos(D(x+E))]:
col 1 : A B C D E A_delta B_delta C_delta D_delta ones_n_1
col 2 : C D B_delta C_delta D_delta ones_n_1
col 3 : C D B_delta C_delta ones_n_1
col 4 : C D C_delta ones_n_1
col 5 : D C_delta ones_n_1
col 6 : C C_delta ones_n_1
col 7 : C D ones_n_1
col 8 : C D C_delta

6. IMPLEMENTATION AT IOTA

Since the tracker needs to run on a real-time processor (VxWorks operating system on a Motorola PowerPC 604
processor on a MVME-2431 card), after the initial development and prototyping in MATLAB, the algorithm was
converted (manually) to ANSI C. As the algorithm evolved during this implementation process, the MATLAB and C
versions were continually updated to maintain the same variable names, function names, and structure to the extent
possible. The two versions produce results that are identical when compared to the limit of floating point precision (6
digits).

A test function was developed in both C and MATLAB that generated an idealized scan for testing the algorithm. This
arrangement proved useful in determining whether a problem was in the interface between the calling function , the
implementation of the C-version of the function, or the algorithm itself (in which case a problem would be detected
when running in MATLAB). This development arrangement will enable off-line data analysis and facilitate further
algorithm improvements.

The C code is compiled using WindRiver Tornado, which uses the gcc and g++ compilers to create a .out file that is
then loaded onto the VxWorks target at run-time. Variables that may need to be changed, such as nFringe, nDft, and
threshold_ratio, are passed as inputs to this function so that there should not be a need to recompile the fringe-tracking
code if these parameters must be updated for different observing conditions. These parameters can be set through an
IDL interface, enabling them to be changed easily during a run.

 10

6.1. Testing
Initial testing was performed during February 2002 on the IOTA system, tracking fringes generated by a light source.
Tracking performance was very good, even with temporary loss of fringe data (for example, caused by banging the
table)–in these cases, the system correctly decided that confidence was low and did not try to track until the fringe
packet re-formed. Also, the system performed very well with the scan travel set at both 15 and 30 microns, and with no
manual adjustment of parameters. The fringe packet appears twice as wide for the 15-micron scan, further indicating the
robustness of the algorithm. Unfortunately, due to poor weather conditions, we were unable to test it on the sky.

When initially implemented, some overshoot was noticed when the fringe tracking was active. This was effectively
addressed by implementing a gain of 0.7 in the control loop. So instead of commanding a motion to move to the
identified center location, the system moves 70% of that distance.

6.2. Speed
The following results were obtained by running the function for 10,000 or 100,000 times and measuring the total
elapsed time, and allowing for a calibrated conversion between the PC used for testing and the real-time processor. The
algorithm generated an ideal fringe packet (time to compute this is included) and then identified the center. Running the
full algorithm presented in Section 2 took 0.67 milliseconds per cycle on the PowerPC. Including all three
interferograms for each scan, the total compute time is 2.0 milliseconds, which is fast enough to be used.

% of time time [ms] Algorithm step(s)
75% 0.50 4 extra DFT calculations for window size adaptation
19% 0.13 Required DFT calculation
6% 0.04 Everything else (template, confidence, etc.)

100% 0.67 Total time per interferogram per scan

7. CONCLUSIONS

Interferogram center ID works very well on the data sets tested so far, including the 1997 data, data generated by a light
source using the IOTA configuration as of Feb 2002, and actual on-the-sky fringes from 2002 and 2004. The fringe-
center estimate provided by the Adaptive DFT-based or envelope-based algorithms is sufficiently accurate for fringe
tracking. That is, the initial estimate of C in the equation y = A sinc(B(x+C)) cos(D(x+E)) is sufficient, and full
nonlinear estimation of A, B, C, D, E provides only marginal improvement. The adaptive nature of the DFT-based
algorithm virtually eliminates the need to set any target-dependent parameters, and provides robust tracking in the
presence of significant atmospheric distortion.

On-line implementation of this algorithm at IOTA was completed in May 2002, using all three telescopes. Compute
time for all three interferograms is estimated to be 2.0 ms. Fringe tracking was considered successful, but no
quantitative results have yet been derived from these tests.

Prediction of interferogram motion using adaptive linear predictors appears feasible to a small extent, but major effort in
this area may not be warranted since the payoff appears small relative to that achievable through fringe tracking control
(without prediction).

ACKNOWLEDGEMENTS

The algorithm development work presented here was funded through Director’s Discretionary Fund awards at NASA
Ames Research Center. The authors wish to thank the staff and other researchers at IOTA for their invaluable
contributions to the research facility. The IOTA is operated by the Smithsonian Astrophysical Observatory, a member
of the Harvard-Smithsonian Center for Astrophysics.

 11

 12

REFERENCES

1 W.A. Traub, et al, “The third telescope project at the IOTA interferometer,” Proc. SPIE 4006, 2000.
2 W.A. Traub, et al, “New beam-combination techniques at IOTA,” Proc. SPIE 4838, 2002.
3 http://cfa-www.harvard.edu/cfa/oir/IOTA/, 2004.
4 R. Millan-Gabet, Investigation of Herbig Ae/Be stars in the near-infrared with a long baseline interferometer,

Ph.D. thesis, University of Massachusetts at Amherst, 1999.
5 E. Pedretti, Systèms d'Imagerie Interférométriques (Imaging Interferometric Systems), Ph.D. thesis, Université de

Provence - Aix-Marseille I, Observatoire de Haute-Provence, France, 2003.
6 E. Wilson and R. Mah, “On-line fringe tracking and prediction at IOTA,” Proc. 18th Congress of the International

Commission for Optics, San Francisco, California, August 1999.
7 S Morel, et al, “Fringe-tracking experiments at the IOTA interferometer,” Proc. SPIE 4006, 2000.
8 E. Pedretti, et al, “Fringe tracking at the IOTA interferometer,” Proc. SPIE 5491-62, 2004.
9 N. Thureau, et al, “Fringe envelope tracking at COAST,” Proc. SPIE 4838, 2003.
10 E. Wilson, et al, “Adaptive DFT-based interferometer fringe tracking,” in EURASIP Journal on Applied Signal

Processing – special issue on Applications of Signal Processing in Astrophysics and Cosmology, Q2, 2005
(submitted).

	INTRODUCTION
	Related research
	Approach
	Article overview

	DFT-BASED TRACKING
	Algorithm summary
	Algorithm steps illustrated on example data
	Confidence metric calculation
	Three-scan tracking
	Optional operations

	ENVELOPE-BASED TRACKING
	GRADIENT-BASED OPTIMIZATION OF ALL FRINGE PARAMETERS
	PREDICTION OF FRINGE-MOTION
	IMPLEMENTATION AT IOTA
	Testing
	Speed

	CONCLUSIONS

